Rezarta Cara – Faculty of Professional Studies, “Aleksander Moisiu” University Durres, 2002 Durres, Albania
Fjona Cara – Mannheim University, Mannheim, Germany
Bajram Korsita – Faculty of Business, “Aleksander Moisiu” University Durres, 2002 Durres, Albania
Abstract: The efficiency of energy usage in buildings has become a crucial focus in research and practical applications as the global energy demand continues to escalate. Buildings are responsible for approximately 40% of worldwide energy consumption and significantly contribute to carbon emissions. This paper examines recent advancements in energy- efficient technologies, materials, and methodologies utilized in both residential and commercial buildings. Key focus areas include passive building design, advanced insulation materials, energy-efficient HVAC systems, innovative building technologies, and incorporating renewable energy sources. The review of energy efficiency in buildings underscores promising areas for future research, such as smart grid integration, AI-driven energy management, and the potential development of zero-energy buildings (ZEB)..
Keywords: Energy Efficiency, Smart Building Technologies, AI-Driven Energy Management, Photovoltaic Systems, Energy Storage Solutions.
Full Text: PDF
DOI: https://doi.org/10.5281/zenodo.15779801
Publication Date: 01.07.2025
How to Cite: Cara R., Cara F., Korsita B, Scientific Perspective on Energy Efficiency in Buildings, Journal of Integrated Engineering and Applied Sciences, 2025; 3(2); 199-216.
References:
- Andrić, I., Koc, M., & Al-Ghamdi, S. G. (2019). A review of climate change implications for built environment: Impacts, mitigation measures and associated challenges in developed and developing countries. Journal of Cleaner Production, 211(211), 83–102. https://doi.org/10.1016/j.jclepro.2018.11.128
- Li, Z., Muhammad Bilal Awan, Lu, M., Li, S., Muhammad Shahbaz Aziz, Zhou, X., Du, H., Sha, X., & Li, Y. (2023). An Overview of Emerging and Sustainable Technologies for Increased Energy Efficiency and Carbon Emission Mitigation in Buildings.Buildings,13(10),2658-2658. https://doi.org/10.3390/buildings13102658
- Kovalchuk, N., & Shcherbakova, I. (2024). Modern technological solutions for the construction of energy-efficient buildings. E3S Web of Conferences, 531, 01022. https://doi.org/10.1051/e3sconf/202453101022
- Ahmed, A., Ge, T., Peng, J., Yan, W.-C., Tee, B. T., & You, S. (2022). Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings, 256(111755), 111755. https://doi.org/10.1016/j.enbuild.2021.111755
- Hernández, J. L., de Miguel, I., Vélez, F., & Vasallo, A. (2024). Challenges and opportunities in European smart buildings energy management: A critical review. Renewable and Sustainable Energy Reviews, 199, 114472. https://doi.org/10.1016/j.rser.2024.114472
- Elaouzy, Y., & El Fadar, A. (2022). Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review. Renewable and Sustainable Energy Reviews, 167, 112828. https://doi.org/10.1016/j.rser.2022.112828
- Darula, S., Christoffersen, J., & Malikova, M. (2015). Sunlight and Insolation of Building Interiors. Energy Procedia, 78, 1245–1250. https://doi.org/10.1016/j.egypro.2015.11.266
- Friedman, A., & Chaki, B. (2025). Site Planning. Fundamentals of Planning and Designing Sustainable Post-Disaster Shelters, 39–57. https://doi.org/10.1007/978-3-031-83317-5_3
- Ekrami, N., Garat, A., & Fung, A. S. (2015). Thermal Analysis of Insulated Concrete Form (ICF) Walls. Energy Procedia, 75, 2150–2156. https://doi.org/10.1016/j.egypro.2015.07.353
- Mugahed Amran, Y. H., El-Zeadani, M., Huei Lee, Y., Yong Lee, Y., Murali, G., & Feduik, R. (2020). Design innovation, efficiency and applications of structural insulated panels: A review. Structures, 27, 1358–1379. https://doi.org/10.1016/j.istruc.2020.07.044
- Mao, S., Kan, A., Huang, Z., & Zhu, W. (2020). Prediction of thermal performance of vacuum insulation panels (VIPs) with micro-fiber core materials. Materials Today Communications, 22, 100786. https://doi.org/10.1016/j.mtcomm.2019.100786
- Craig, S. (2019). The optimal tuning, within carbon limits, of thermal mass in naturally ventilated buildings. Building and Environment, 165, 106373. https://doi.org/10.1016/j.buildenv.2019.106373
- Jiang, Z., Kobayashi, T., Yamanaka, T., & Sandberg, M. (2023). A literature review of cross ventilation in buildings. Energy and Buildings, 291, 113143–113143. https://doi.org/10.1016/j.enbuild.2023.113143
- Theocharis Tsoutsos, & Mandalaki, M. (2020). Solar Shading Systems: Design, Performance, and Integrated Photovoltaics. In SpringerBriefs in energy. https://doi.org/10.1007/978-3-030-11617-0
- Plörer, D., Hammes, S., Hauer, M., van Karsbergen, V., & Pfluger, R. (2021). Control Strategies for Daylight and Artificial Lighting in Office Buildings—A Bibliometrically Assisted Review. Energies, 14(13), 3852. https://doi.org/10.3390/en14133852
- Li, G., Xuan, Q., Akram, M. W., Golizadeh Akhlaghi, Y., Liu, H., & Shittu, S. (2020). Building integrated solar concentrating systems: A review. Applied Energy, 260, 114288. https://doi.org/10.1016/j.apenergy.2019.114288
- Mustafa, J., Saeed Alqaed, Mohsen Sharifpur, & Meyer, J. (2024). Optimization of window solar gain for a building with less cooling load. Case Studies in Thermal Engineering, 53, 103890–103890. https://doi.org/10.1016/j.csite.2023.103890
- Deng, J., Yao, R., Yu, W., Zhang, Q., & Li, B. (2019). Effectiveness of the thermal mass of external walls on residential buildings for part-time part-space heating and cooling using the state-space method. Energy and Buildings, 190, 155–171. https://doi.org/10.1016/j.enbuild.2019.02.029
- Yang, Y., & Chen, S. (2022). Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications. Renewable and Sustainable Energy Reviews, 167, 112738. https://doi.org/10.1016/j.rser.2022.112738
- Zhao, B., Hu, M., Ao, X., Xuan, Q., & Pei, G. (2020). Spectrally selective approaches for passive cooling of solar cells: A review. Applied Energy, 262, 114548. https://doi.org/10.1016/j.apenergy.2020.114548
- Yu, Z., Chen, J., Chen, J., Zhan, W., Wang, C., Ma, W., Yao, X., Zhou, S., Zhu, K., & Sun, R. (2024). Enhanced observations from an optimized soil-canopy-photosynthesis and energy flux model revealed evapotranspiration-shading cooling dynamics of urban vegetation during extreme heat. Remote Sensing of Environment, 305, 114098–114098. https://doi.org/10.1016/j.rse.2024.114098
- Laurini, E., Taballione, A., Rotilio, M., & De Berardinis, P. (2017). Analysis and exploitation of the stack ventilation in the historic context of high architectural, environmental and landscape value. Energy Procedia, 133, 268–280. https://doi.org/10.1016/j.egypro.2017.09.386
- Zhang, S.-N., Pang, H.-Q., Fan, T.-H., Huang, Z., Guo, J. F., & Wu, X. (2025). Phase change extinction fiber doped aerogel vacuum insulation panels for high temperature insulation. International Communications in Heat and Mass Transfer, 162, 108650–108650. https://doi.org/10.1016/j.icheatmasstransfer.2025.108650
- Zhang, T., & Yang, H. (2019). Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes. Applied Energy, 250, 834–845. https://doi.org/10.1016/j.apenergy.2019.05.070
- Donaldson, J., & Seader, J. N. (2024). Assessing the Waterproofing Performance and Repairability of Spray Polyurethane Foam Roofing Distressed by Hail or Debris Impact. Forensic Engineering 2022, 1040–1047. https://doi.org/10.1061/9780784485798.106
- Koshlak, H., Borys Basok, Pavlenko, A., Svitlana Goncharuk, Borys Davydenko, & Piotrowski, J. (2024). Experimental and Numerical Studies of Heat Transfer through a Double-Glazed Window with Electric Heating of the Glass Surface. Sustainability, 16(21), 9374–9374. https://doi.org/10.3390/su16219374
- Wurm, J., Fujisawa-Phillips, S. T., & Rasskazov, I. L. (2024). Optimal design of low-emissivity coatings. Solar Energy Materials and Solar Cells, 280, 113267–113267. https://doi.org/10.1016/j.solmat.2024.113267
- Kassab, R., & Sadeghian, P. (2025). Design Guidelines for FRP-Faced Foam Core Sandwich Panels: Review and Building Code Compliance. Journal of Architectural Engineering, 31(2). https://doi.org/10.1061/jaeied.aeeng-1920
- Verma, R., & Rakshit, D. (2023). Comparison of Reflective Coating With Other Passive Strategies: A Climate Based Design and Optimization Study of Building Envelope. Energy and Buildings, 112973. https://doi.org/10.1016/j.enbuild.2023.112973
- Simpeh, E. K., Pillay, J.-P. G., Ndihokubwayo, R., & Nalumu, D. J. (2021). Improving energy efficiency of HVAC systems in buildings: a review of best practices. International Journal of Building Pathology and Adaptation, 40(2), 165–182. https://doi.org/10.1108/ijbpa-02-2021-0019
- Girts Vigants, Gundars Galindoms, Ivars Veidenbergs, Edgars Vigants, & Dagnija Blumberga. (2015). Efficiency Diagram for District Heating System with Gas Condensing Unit. Energy Procedia, 72, 119–126. https://doi.org/10.1016/j.egypro.2015.06.017
- Kaya, D., Çanka Kılıç, F., & Öztürk, H. H. (2021). Energy Efficiency in Pumps. Energy Management and Energy Efficiency in Industry, 329–374. https://doi.org/10.1007/978-3-030-25995-2_11
- Soltani, M., M. Kashkooli, F., Dehghani-Sanij, A. R., Kazemi, A. R., Bordbar, N., Farshchi, M. J., Elmi, M., Gharali, K., & B. Dusseault, M. (2019). A comprehensive study of geothermal heating and cooling systems. Sustainable Cities and Society, 44, 793–818. https://doi.org/10.1016/j.scs.2018.09.036
- Yat Huang Yau, Umair Ahmed Rajput, & Badarudin, A. (2024). A comprehensive review of variable refrigerant flow (VRF) and ventilation designs for thermal comfort in commercial buildings. Journal of Thermal Analysis and Calorimetry, 149(5), 1935–1961. https://doi.org/10.1007/s10973-023-12837-3
- Bhat, S., & Vinod Varma Vegesna. (2024). Building Thermal Comforts with Various HVAC Systems and Optimum Conditions. 7(9), 14845–14852. https://doi.org/10.15680/IJMRSET.2024.0709032
- Stopps, H., & Touchie, M. F. (2021). Residential smart thermostat use: An exploration of thermostat programming, environmental attitudes, and the influence of smart controls on energy savings. Energy and Buildings, 238, 110834. https://doi.org/10.1016/j.enbuild.2021.110834
- Rodriguez, J., & Fumo, N. (2021). Zoned heating, ventilation, and air–conditioning residential systems: A systematic review. Journal of Building Engineering, 43, 102925. https://doi.org/10.1016/j.jobe.2021.102925
- Qiang, G., Tang, S., Hao, J., Di Sarno, L., Wu, G., & Ren, S. (2023). Building automation systems for energy and comfort management in green buildings: A critical review and future directions. Renewable and Sustainable Energy Reviews, 179, 113301. https://doi.org/10.1016/j.rser.2023.113301
- Afroz, Z., Higgins, G., Shafiullah, G. M., & Urmee, T. (2020). Evaluation of real-life demand-controlled ventilation from the perception of indoor air quality with probable implications. Energy and Buildings, 219, 110018. https://doi.org/10.1016/j.enbuild.2020.110018
- Schibuola, L., Scarpa, M., & Tambani, C. (2018). Variable speed drive (VSD) technology applied to HVAC systems for energy saving: an experimental investigation. Energy Procedia, 148, 806–813. https://doi.org/10.1016/j.egypro.2018.08.117
- Albatayneh, A., Juaidi, A., Abdallah, R., & Manzano-Agugliaro, F. (2021). Influence of the Advancement in the LED Lighting Technologies on the Optimum Windows-to-Wall Ratio of Jordanians Residential Buildings. Energies, 14(17), 5446. https://doi.org/10.3390/en14175446
- Gemar, M. D., Pan, S., Zhang, Z., & Machemehl, R. B. (2025). Fuzzy Reliability Theory Analysis of Traffic Signal Lamp Performance. Multimodal Transportation, 100195–100195. https://doi.org/10.1016/j.multra.2025.100195
- Vodapally, S. N., & Ali, M. H. (2023). A Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency. Energies, 16(1), 319. https://doi.org/10.3390/en16010319
- Divya, A., Adish, T., Kaustubh, P., & Zade, P. S. (2023). Review on recycling of solar modules/panels. Solar Energy Materials and Solar Cells, 253, 112151. https://doi.org/10.1016/j.solmat.2022.112151
- Rodrigo, P. M., Velázquez, R., & Fernández, E. F. (2016). DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico. Solar Energy, 139, 650–665. https://doi.org/10.1016/j.solener.2016.10.042
- Yu, X., Chen, R., Gan, L., Li, H., & Chen, L. (2022). Battery Safety: From Lithium-Ion to Solid-State Batteries. Engineering, 21. https://doi.org/10.1016/j.eng.2022.06.022
- Rahman, M. M., Oni, A. O., Gemechu, E., & Kumar, A. (2020). Assessment of energy storage technologies: A review. Energy Conversion and Management, 223, 113295. https://doi.org/10.1016/j.enconman.2020.113295
- Paul Ayeng’o, S., Schirmer, T., Kairies, K.-P., Axelsen, H., & Uwe Sauer, D. (2018). Comparison of off-grid power supply systems using lead-acid and lithium-ion batteries. Solar Energy, 162, 140–152. https://doi.org/10.1016/j.solener.2017.12.049
- Hunt, J. D., Zakeri, B., Nascimento, A., & Brandão, R. (2022). Pumped hydro storage (PHS) (pp. 37–65). Elsevier. https://doi.org/10.1016/B978-0-12-824510-1.00008-8
- Palacios, A., Barreneche, C., Navarro, M. E., & Ding, Y. (2019). Thermal Energy Storage Technologies for Concentrated Solar Power – a Review from a Materials Perspective. Renewable Energy, 156. https://doi.org/10.1016/j.renene.2019.10.127
- Jia, M., Komeily, A., Wang, Y., & Srinivasan, R. S. (2019). Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Automation in Construction, 101, 111–126. https://doi.org/10.1016/j.autcon.2019.01.023
- O’Grady, T., Chong, H.-Y., & Morrison, G. M. (2021). A systematic review and meta-analysis of building automation systems. Building and Environment, 195, 107770. https://doi.org/10.1016/j.buildenv.2021.107770
- Trencher, G., Castán Broto, V., Takagi, T., Sprigings, Z., Nishida, Y., & Yarime, M. (2016). Innovative policy practices to advance building energy efficiency and retrofitting: Approaches, impacts and challenges in ten C40 cities. Environmental Science & Policy, 66, 353–365. https://doi.org/10.1016/j.envsci.2016.06.021
- Lou, H.-L., & Hsieh, S.-H. (2024). Towards Zero: A Review on Strategies in Achieving Net-Zero-Energy and Net-Zero-Carbon Buildings. Sustainability, 16(11), 4735. https://doi.org/10.3390/su16114735