Active Fuzzy Control of Linear and Nonlinear Suspensions in Vehicles

Konstantinos Marakakis – School of Production and Management, Technical University of Crete, GR-73100 Chania, Greece; IKTEO Chanion – Technical Inspection Site for Vehicles, Chania, Greece

Manolis Paterakis – School of Production and Management, Technical University of Crete, GR-73100 Chania, Greece

Georgios K. Tairidis – School of Production and Management, Technical University of Crete, GR-73100 Chania, Greece

Georgios E. Stavroulakis – School of Production and Management, Technical University of Crete, GR-73100 Chania, Greece

Abstract: Suspensions are vital for a vehicle, since they provide safety and comfort. There are many types of suspensions in the industry. The most advanced of them are the active or electronic suspensions, where the degree of damping is modified in order to achieve the desired rolling of the vehicle. This is achieved by changing the pressure or the flow of air or oil inside the damper, or its properties. A control system is necessary for this task. Powerful and robust soft control tools, such as fuzzy inference systems can provide the desired results. In the present paper, the active suspension is controlled by a fuzzy logic controller through a piezoelectric actuator which provides the control force. Classical control tools, such as the Proportional-Integral-Derivative (PID) controller are used for comparison. From the simulation results it is shown that both methods can achieve smooth behaviour of the active suspension. Fuzzy control was proved to be faster than the PID, while the latter was more efficient in the first period of vibration. Moreover, the fuzzy controller was proved very efficient even in the presence of non-linearities within the suspension system.

Keywords: Fuzzy control; active suspension; vehicle dynamics; PID control.

Full Text: PDF

DOI: https://doi.org/10.5281/zenodo.14188048

Publication Date: 19.11.2024 

How to Cite: Marakakis, K., Paterakis, M., Tairidis, G. K., & Stavroulakis, G. E. Active Fuzzy Control of Linear and Nonlinear Suspensions in Vehicles. Journal of Integrated Engineering and Applied Sciences, 2024; 2(2); 92–108. 

References:

  1. D’Amato, F.J. and Viassolo, D.E. Fuzzy control for active suspensions. Mechatronics 2000; 10; 897-920.
  2. Sun, T., Huang, Z-Y., Chen, D-Y. and Tang, L. Signal frequency based self-tuning fuzzy controller for semi-active suspension system. J. Zhejiang Univ. Sci. A 2003; 4; 426-432. 
  3. Foda, S.G. Fuzzy control of a quarter-car suspension system. Proceedings of the 12th International Conference on Microelectronics, Tehran, Iran, 31 Oct.-2 Nov. 2000, IEEE: Piscataway, New Jersey, US, 2000, p. 231–234. 
  4. Kalaivani, R., Lakshmi, P. and Sudhagar, K. Vibration control of vehicle active suspension system using novel fuzzy logic controller. Int J Enterprise Network Manage 2014; 6; 139-152. 
  5. Palanisamy, S. and Karuppan, S. Fuzzy control of active suspension system. J Vibroeng 2016; 18; 3197-3204. 
  6. Sam, Y.M., Osman, J.H. and Ghani, M.R.A. A class of proportional-integral sliding mode control with application to active suspension system. Syst Control Lett 2004; 51; 217-223. 
  7. Zhao, F., Ge, S.S., Tu, F., Qin, Y. and Dong, M. Adaptive neural network control for active suspension system with actuator saturation. IET Control Theor Appl 2016;10; 1696-1705. 
  8. Mustafa, G.I.Y., Wang, H.P. and Tian, Y. Vibration control of an active vehicle suspension systems using optimized model-free fuzzy logic controller based on time delay estimation. Adv Eng. Softw. 2019; 127; 141-149. 
  9. Demir, O., Keskin, I. and Cetin, S. Modeling and control of a nonlinear half-vehicle suspension system: a hybrid fuzzy logic approach. Nonlinear Dyn. 2012; 67; 2139-2151. 
  10. Bhattacharjee, V., Chatterjee, D. and Karabasoglu, O. Hybrid control strategy for a semi active suspension system using fuzzy logic and bio-inspired chaotic fruit fly algorithm. ArXiv 2017, abs/1703.08878.
  11. Phu, D.X. and Choi, S-B. A new adaptive fuzzy PID controller based on Riccati-like equation with application to vibration control of vehicle seat suspension, Appl Sci 2020; 9; 4540. 
  12. Moaaz, A.O. and Ghazaly, N.M. Fuzzy and PID Controlled Active Suspension System and Passive Suspension System Comparison. Int. J. Adv. Sci. Technol. 2019; 28; 1721-1729. 
  13. Changizi, N. and Rouhani, M. Comparing PID and fuzzy logic control a quarter-car suspension system. Journal of Mathematics and Computer Science 2011; 2; 559-564. 
  14. Tairidis, G., Foutsitzi, G., Koutsianitis, P. and Stavroulakis, G.E. Fine tuning of a fuzzy controller for vibration suppression of smart plates using genetic algorithms. Adv. Eng. Software 2016; 101; 123-135. 
  15. Nagarkar, M.P., Bhalerao, Y.J., Patil, G.J.V. and Patil, R.N.Z. GA-based multi-objective optimization of active nonlinear quarter car suspension system—PID and fuzzy logic control. Int. J. Mech. Mater. Eng. 2018; 13; 1-10. 
  16. Tairidis, G., Stavroulakis, G.E., Marinova, D. and Zacharenakis, E. Classical and soft robust active control of smart beams. In Computational Structural Dynamics and Earthquake Engineering, Papadrakakis, M., Charmpis, D.C., Lagaros N.D., Tsompanakis Y., Eds.; CRC Press – Taylor & Francis Group: London, UK, 2009; 2; 165-177. 
  17. Tamaarat, A. Active and reactive power control for DFIG using PI, fuzzy logic and self-tuning PI Fuzzy controllers. Advances in Modelling and Analysis C 2019; 74; 59-66. 
  18. Guo, W., Li, R.; Zhu, Y., Yang, T., Qin, R. and Hu, Z. A robotic deburring methodology for tool path planning and process parameter control of a five-degree-of-freedom robot manipulator, Appl. Sci. 2019; 9; 2033. 
  19. Phan, K.B., Ha, H.T. and Hoang, S.V. Eliminating the effect of uncertainties of cutting forces by fuzzy controller for robots in milling process, Appl. Sci. 2020; 10; 1685. 
  20. Mohite, A.G. and Mitra, A.C. Development of linear and non-linear vehicle suspension model. Materials Today: Proceedings 2018; 5; 4317-4326.
  21. Varude, V.R., Mathew, A.A., Diwan, A.Y., Banerjee, N. and  Mitra, A.C. Effect of induced geometric non-linearity in a spring on vehicle ride comfort and road holding. Materials Today: Proceedings 2018; 5; 20177–20185. 
  22. Barethiye, V.M., Pohit, G. and Mitra A., Analysis of a quarter car suspension system based on nonlinear shock absorber damping models. Int. J. Automot. Mech. Eng. 2017; 14; 4401-4418. 
  23. Abd_Elsalam, A., El-Gohary, M.A. and El-Gamal, H.A. Simulation of nonlinear quarter car suspension system with and without tire damping. International Journal of Advanced Scientific and Technical Research 2016; 6; 98-105. 
  24. Emam, A.S. Fuzzy Self Tuning of PID Controller for Active Suspension System. Advances in Powertrains and Automotives 2015; 1; 34-41. 
  25. Tairidis, G.K. and Stavroulakis, G.E. Fuzzy and neuro-fuzzy control for smart structures. In Computational Intelligence and Optimization Methods for Control Engineering, Blodin M.J., Pardalos P.M. and Sáez J.S., Eds.; Springer: Cham, Switzerland, 2019, pp. 75-103.
  26. Tairidis, G.K. and Stavroulakis, G.E. Introduction to Mechatronics. E-book in Greek available through Kallipos Open Academic Editions, 2023,  https://repository.kallipos.gr/handle/11419/10437